الجمهورية الجزائرية الديمقراطية الشعبية REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE وزارة التعليم العالى والبحث العلمى

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Comité Pédagogique National du Domaine

Sciences de la Matière (CPND-SM)

L2 Chimie

30 Avril 2018

Semestre 3-

L2 Chimie - Domaine « Sciences de la Matière » ; Filière « Chimie »

Unité d'enseignement	Matières		its	cient	Volume horaire hebdomadaire			VHS	A 4 *	Mode d'évaluation	
	Code	Intitulé	Crédits	Coefficient	Cours	TD	TP	(15 semaines)	Autre*	Contrôle Continu	Examen
UE Fondamentale Code : UEF12 Crédits : 20 Coefficient : 10	F121	Chimie Minérale	6	3	3h00	1h30		67h30	82h50	33%	67%
	F122	Chimie Organique 1	6	3	3h00	1h30		67h30	82h50	33%	67%
	F123	Mathématiques Appliquées	4	2	1h30	1h30		45h00	55h00	33%	67%
	F124	Vibrations, Ondes et Optiques	4	2	1h30	1h30		45h00	55h00	33%	67%
UE Méthodologie Code : UEM12 Crédits : 07 Coefficient : 04	M121	TP Chimie Minérale	2	1			1h30	22h30	27h50	50%	50%
	M122	TP Chimie Organique 1	2	1			1h30	22h30	27h50	50%	50%
	M123	Méthodes Numériques et Programmation	3	2	1h30		1h30	45h00	30h00	50%	50%
UE Découverte Code : UED12 Crédits : 02 Coefficient : 02	D121	Techniques d'Analyse Physico- Chimique I	2	2	1h30	1h30		45h00	05h00	50%	50%
UE Transversale Code : UET12 Crédits : 01 Coefficient : 01	T121	Anglais 3	1	1	1h00			15h00	10h00		100%
	Total Semestre 3		30	17	13h00	07h30	04h30	375h00	375h00		

Autre*: travail complémentaire en consultation semestrielle

Semestre 4

L2 Chimie - Domaine « Sciences de la Matière » ; Filière « Chimie »

Unité d'enseignement	Matières		dits	cient	Volume horaire hebdomadaire			VHS (15	Autre*	Mode d'évaluation	
	Code	Intitulé	Crédits	Coefficient	Cours	TD	TP	semaines)	Autre	Contrôle Continu	Examen
UE Fondamentale Code : UEF22 Crédits : 20 Coefficient : 10	F221	Chimie Organique 2	6	3	3h00	1h30		67h30	82h50	33%	67%
	F222	Thermodynamique & Cinétique Chimique	6	3	3h00	1h30		67h30	82h50	33%	67%
	F223	Chimie Analytique	4	2	1h30	1h30		45h00	55h00	33%	67%
	F224	Chimie Quantique	4	2	1h30	1h30		45h00	55h00	33%	67%
UE Méthodologie Code : UEM22 Crédits : 07 Coefficient : 04	M221	TP Chimie Analytique	2	1			1h30	22h30	27h50	50%	50%
	M222	TP Thermodynamique & Cinétique Chimique	2	1			1h30	22h30	27h50	50%	50%
	M223	Chimie Inorganique	3	2	1h30		1h30	45h00	30h00	50%	50%
UE Découverte Code : UED22 Crédits : 02 Coefficient : 02	D221	Techniques d'Analyse Physico- chimique II	2	2	1h30	1h30		45h00	05h00	50%	50%
UE Transversale Code : UET22 Crédits : 01 Coefficient : 01	T221	Anglais 4	1	1	1h00			15h00	10h00		100%
Total Semestre 4		30	17	13h00	07h30	04h30	375h00	375h00			

Autre*: travail complémentaire en consultation semestrielle

CONTENUS PEDAGOGIQUES DU L2 CHIMIE/S3 & S4

Programmes des matières, Semestre 3

Unité d'Enseignement Fondamentale (UEF12)

UEF12 / F121

Chimie Minérale

(3h Cours+1h30' TD/ semaine); 67h30'/Semestre

Contenu de la matière :

Chapitre 1 : Le Tableau Périodique

- 1. Les éléments dans le tableau périodique (périodes, périodicité des propriétés, blocs, familles)
- 2. La liaison chimique:
 - a. La liaison covalente
 - b. La liaison ionique
 - c. La liaison métallique
 - d. La liaison de Van der Wals et la liaison hydrogène
- 3. Diagramme énergétique des orbitales moléculaires
- 4. Hybridation
- 5. Polarisation d'une liaison.

Chapitre 2 : L'hydrogène

Etat naturel, propriétés physico-chimiques, préparation de l'hydrogène, les composés de l'hydrogène (hydrures, halogénures d'hydrogène) et leurs propriétés acido-basiques et oxydo-réductrices.

Chapitre 3 : L'oxygène & Le soufre

Etat naturel, propriétés physico-chimiques, préparation, utilisation, composés à base d'oxygène, réactivité de l'oxygène, propriétés acido-basiques et oxydo-réductrices.

Chapitre 4 : Les halogènes (Fluor, Chlore, Brome, Iode)

Dans tous les cas on étudiera l'état naturel, les propriétés physico-chimiques, l'obtention et l'utilisation.

Chapitre 5: L'azote, le phosphore, l'arsenic et l'antimoine

Etat naturel, propriétés physico-chimiques, obtention, l'ammoniac et ses propriétés, les oxydes et les oxacides de l'azote. Préparation de l'acide nitrique et son utilisation.

Chapitre 6:

Etats naturels de ces éléments, leur obtention, leur utilisation

Chapitre 7: Le Carbone et le silicium

Propriétés physico-chimiques du carbone et du silicium, obtention, les oxydes et les oxacides du silicium, les silicates, le gel de silice, les silicones.

Chapitre 8 : Les métaux

- 1. Les métaux alcalins:
 - Groupe I du tableau périodique : généralités, propriétés.
 - Le sodium : fabrication, dérivés du sodium.
- 2. Les métaux alcalinotereux
 - Groupe II du tableau périodique : généralités, propriétés.
 - Le magnésium : fabrication, dérivés du magnésium.
- 3. Les métaux du bloc d (transition)
 - 1. Etude de quelques éléments : état naturel, propriétés, obtention et utilisation

Chapitre 9: Les complexes

- 1- Notions de complexe (ligands, agents complexants)
- 2- Nomenclature
- 3- Etude de la liaison chimique dans les complexes, hybridations dans les complexes
- 4- Structures des complexes de coordination
- 5- Propriétés des complexes
- 6- Théorie du champ cristallin

Références bibliographiques

- 1. M. BERNARD, Cours de Chimie Minérale, Ed. Dunod (2005, 2ème Ed)
- 2. P. W. ATKINS, D.F. SHRIVER, Chimie inorganique, Ed. De Boek, (2001)
- 3. S. S. ZUMDAHL, Chimie générale, De Boeck, (1999)
- 4. R. DIDIER, P. GRECIAS, Chimie Générale, cours et exercices résolus, Tec & Doc, (2004).

UEF12 / F122

Chimie Organique 1

(3h Cours+1h30' TD/ semaine); 67h30'/Semestre

Contenu de la matière :

Chapitre I: Rappel sur les Liaisons chimiques

Rappels sur les orbitales atomiques. Liaisons intramoléculaires, liaison covalente, hybridation du carbone (sp³, sp², sp), méthode VSEPR, liaison ionique. Liaisons intermoléculaires (la liaison d'hydrogène).

Chapitre II : Classification des fonctions organiques, Nomenclature systématique (IUPAC) des composés organiques

- II-1. Fonctions et groupes fonctionnels, Classifications des fonctions organiques : monovalentes, divalentes et trivalentes
- II-2. Règles de nomenclature
- II-2-1-Hydrocarbures aliphatiques
 - II-2-1-1-Les alcanes
 - II-2-1-2-Les alcènes
 - II-2-1-3-Les alcynes
- II-2-2-Hydrocarbures alicycliques
- II-2-3- Les halogénures d'alkyles
- II-2-4- Hydrocarbures aromatiques
- II-2-5- Les alcools
- II-2-6- Les éthers
- II-2-7- Les amines : Amines primaires, secondaires et tertiaires
- II-2-8- Les carbonyles : les aldéhydes et les cétones
- II-2-9- Les acides carboxyliques
- II-2-10- Les dérivés des acides carboxyliques : Les esters, les Chlorures d'acides, les anhydrides, les amides
- II-2-11-Fonction nitrile

Chapitre III- Isomérie et stéréo-isomérie

I- Analyse élémentaire

Détermination de la formule brute, Détermination d'indice d'insaturation

- II- Isomérie plane
 - a- Définition
 - b- Isomérie de constitution : de chaine ; de fonction ; de position
 - c- Tautomérie
- III- Isomérie géométrique (Isomérie spatial ou stérique)
 - a- Règle séquentielle de Cahn, Ingold et Prelog.
 - b- Isomérie éthylénique : Cis/Trans ; Z/E
 - c- Isomérie cis et trans des composés cycliques.

- d- Isomérie géométrique dans le cas du cyclohexane
- IV- Isomérie optique
 - a-Chiralité
 - b-Opération de symétrie : Axe de symétrie, Plan de symétrie et Centre de symétrie
 - c-Carbone asymétrique
 - d-Configuration absolue R/S
 - e-Représentation de Cram, Newman et Fischer
 - f- Composés à deux carbones asymétriques
 - g-Chiralité axiale
 - h-Isomérie de conformation : alcanes linéaires (éthane, butane), cyclohexane

Chapitre IV- Les effets électroniques

- I- Charge formelle
- II- Moment dipolaire
- III- Effets inductifs: Effet inductif (-I) et Effet inductif (+I)
- IV- Résonance et mésomérie : Effet Mésomère (-M) et (+M), Formules mésomères

(formules limites): Aniline; Benzaldéhyde

V- Acidité -basicité et réactivité des composes organiques

Chapitre V- Mécanismes réactionnels

I-Introduction : écriture d'une réaction en chimie organique, effet du solvant, intermédiaires réactionnels, types de réactifs.

II- Substitution nucléophile d'ordre 1 (SN₁)

III-Elimination d'ordre 1 (E₁)

IV-Substitution nucléophile d'ordre 2 (SN₂)

V-Elimination d'ordre 2 (E₂)

VI-Substitution radicalaire (S_R)

VII-Substitution électrophile (S_E)

VIII-Addition électrophile (A_E)

IX-Addition nucléophile (A_N)

X-Addition radicalaire (A_R)

- 1. Chimie Générale. R. Ouahes. B. Devallez, Publisud, 1988.
- 2. Chimie Organique Tom1-Structure, Allinger-Cava-Johnson-DeJongh- Stevens; McGraw-Hill, 1983.
- 3. Chimie Organique Cours et exercices résolus, Pièrre Grécias ; Lavoisier 2004.
- 4. Introduction à la chimie Organique, A. William Johnson, De Boeck, 2013.
- 5. Chimie Organique, cours Paul Arnaud. Dunod, Paris 2003.
- 6. Chimie Organique, Stéréochimie, entités réactives et réactions, René Milcent, EDP sciences 2007.
- 7. Chimie générale chimie organique. Michele Polisset. ELLIPSES-PARIS-2003.
- 8. Chimie Organique Rappels de cours, QCM, exercices corrigés et commentés. Amal. M. CHLTEN. Ed Ellipses, 2007.
- 9. Chimie organique en 25 fiches. Nadège Lubin-Germain et Jacques Uziel, Dunod, Paris 2008.
- 10. Introduction à la chimie organique. Anne Marie Frisque Hesbain. Dunod, Paris 2005.

UEF12 / F123

Mathématiques Appliquées

(1h30' Cours+1h30' TD/ semaine); 45h00/Semestre

Contenu de la matière :

Chapitre 1 : Séries

- 1) Séries numériques :
 - Définitions
 - Opérations élémentaires sur les séries
 - Conditions de convergences d'une série
 - Série géométrique
 - Série de Riemannan
 - Séries à termes positifs
 - Séries absolument convergentes
 - Séries alternées.
- 2) Séries de fonctions:
 - Suites de fonctions
 - Convergence simple et uniforme d'une suite de fonction
 - Séries de fonctions
 - Propriétés générales
 - Convergence uniforme
 - Convergence normale.
- 3) Séries entières:
 - Séries entières et formules de Taylor
 - Calcul de rayon de convergence
 - Opérations sur les séries entières
 - Application : Développement en Série entière des fonctions élémentaires.

Chapitre 2 : Intégrales multiples

- 1) Intégrales simples :
 - Propriétés d'intégrations
 - Méthodes d'intégration
- 2) Intégrales doubles : -
 - Calcul des intégrales doubles
 - Changement des variables
 - Calcul des aires.
- 3) Intégrales triples :
 - Calcul des intégrales triples
 - Changement des variables
 - Calcul des volumes.

Chapitre 3 : Equations différentielles :

- 1) Equations différentielles linéaires du premier ordre.
- 2) Equation de Bernoulli et équation de Ricatti.
- 3) Equations différentielles linéaires du deuxième ordre à coefficients constants.

Chapitre 4 : Notion de probabilité statistique.

- 1. J.BASS: Cours de maths Tome 1et 2
- 2. Elie Azoulay: Cours et exercices de mathématiques Tome2
- 3. Démidovitch: recuil d'exercices et de problémes d'analyse mathématiques
- 4. Serie schum: Analyse
- 5. N Piskonov Calcul differentiel et integral Tome2

UEF12 / F124

Vibrations, Ondes et Optique

(1h30' Cours+1h30' TD/ semaine); 45h00/Semestre

Contenu de la matière :

1. Equations différentielles du second ordre à coefficients constants

- 1. 1. Equation homogène : Régime fortement amorti, Régime critique, Régime pseudopériodique.
- 1.2 Equation avec second membre : Solution générale, cas particuliers d'un second membre sinusoïdal.

2. Oscillations libres des systèmes à un degré de liberté

- 2.1 Oscillations non amorties : Oscillateur linéaire, équation différentielle de l'oscillateur harmonique simple, pulsation propre, énergie.
- 2.2 Oscillations libres des systèmes amortis à un degré de liberté. Cas particulier du frottement visqueux : Equation différentielle du mouvement, décrément logarithmique, coefficient de qualité.

3. Oscillations forcées des systèmes à un degré de liberté

- 3.1 Equation différentielle du système masse-ressort-amortisseur en oscillation forcée :
- 3.2 Cas particulier du régime permanent sinusoïdal. Impédance mécanique. Puissance. Résonance. Bande passante. Coefficient de qualité.

4. Oscillations libres des systèmes à deux degrés de liberté

- 4. 1 Système masses-ressorts en translation : Equations différentielles du mouvement. Notion de couplage. Pulsations propres. Modes propres. Phénomène de battement.
- 4.2. Pendules couplés

7. Généralités sur les phénomènes de propagation

- 7.1 Propagation à une dimension : Equation de propagation, Solution de l'équation de propagation, onde progressive sinusoïdale, longueur d'onde, nombre d'onde.
- 7.2 Modèle de la chaine linéaire

8. Ondes acoustiques dans les fluides

- 8.1 Equation de propagation des ondes acoustiques dans les fluides, vitesse du son.
- 8.2 Onde progressive sinusoïdale : pression acoustique, impédance acoustique, énergie acoustique, intensité acoustique.
- 8.3 Réflexion-Transmission des ondes acoustiques en incidence normale.

9. Principes et lois de l'optique géométrique

- 9.1 Réflexion Réfraction
- 9.2 Prisme

10. Construction des images

- 10.1 Stigmatisme
- 10.2 Dioptres plans et sphériques
- 10.3 Miroirs plans et sphériques
- 10.4 Lentilles minces

- 1. T. BECHERRAWY, Vibrations et Ondes, Tomes 1-4, Ed. Hermes-Lavoisier, (2010).
- 2. H. DJELOUAH, Vibrations & ondes Cours et exercices corrigés, (Ed. Pages Bleues, 2017).
- 3. J. BRUNEAUX, Vibrations et Ondes, Ed. Marketing, (2010).
- 4. GEORGES C. KING, Vibrations and waves, (A John Wiley and Sons, Ltd., Publication, 2008).
- 5. S.S. RAO, *Mechanical Vibrations*, (University of Miami, Prentice Hall, 2011).
- 6. S. GRAHAM KELLY, *Theory and problems of mechanical vibrations* (Shaum's outline, 1996).

Unité d'Enseignement Méthodologie (UEM12)

UEM12 / M121

TP Chimie Minérale

(1h30' TP/ sem. ou 3h TP/15j); 22h30/Semestre

Le choix du nombre de TP se fait en fonction du VHH et des moyens disponibles de chaque université.

TP Chimie Minérale:

- 1. Notion de sels en solution : Identification des cations du 1 er, 2ème, 3ème groupes
- 2. Identification des anions
- 3. Solubilité-complexe
- 4. Réaction d'oxydo-réduction
- 5. Formation des complexes
- 6. Le produit de solubilité du chlorure de Pb
- 7. La précipitation sélective des sulfates de Ba⁺⁺ et de Ca⁺⁺

UEM12 / M122

TP Chimie Organique 1

(1h30' TP/ sem. ou 3h TP/15j); 22h30/Semestre

Le choix du nombre de TP se fait en fonction du VHH et des moyens disponibles de chaque université.

TP Chimie Organique 1 PREMIERE PARTIE

Construction de molécules dans l'espace en représentation compacte ou éclatée à l'aide d'un modèle moléculaire, ou à défaut, dessiner les molécules en 3D à l'aide d'un logiciel.

Méthodes de purification des matières organiques :

- 1. Méthodes mécaniques de séparation (filtration, décantation, filtration sous vide,etc.)
- 2. Extraction liquide –liquide
- 3. Réfractométrie
- 4. Préparation d'un savon
- 5. Recristallisation d'un produit organique (acide benzoïque ou un autre produit).
- 6. Séparation d'un mélange benzène- toluène par distillation fractionnée
- 7. Analyse du produit par Chromatographie sur couche Mince« CCM »
- 8. Séparation d'un mélange organique liquide par distillation fractionnée
- 9. Initiation et Présentation des travaux pratiques de chimie organique tests des groupements fonctionnels et tests de solubilité;

DEUXIEME PARTIE : Synthèse des composés organiques

- 1. Préparation du bromure d'éthyle ; Préparation de l'iodure de méthyle
- 2. Préparation du phénétol $C_6H_5OC_2H_5$ à partir du bromure d'éthyle et du phénol
- 3. Synthèse de l'aspirine (acide acétylsalicylique)
- 4. Préparation de l'acide benzoique à partir du toluène
- 5. Synthèse de l'Ortho et Para-Nitrophénol
- 6. Synthèse du Nitrobenzène
- 7. Synthèse de l'aniline
- 8. Synthèse du Phénol à partir de l'aniline
- 9. Synthèse de l'Anisol C₆H₅OCH₃
- 10. Synthèse de l'hélianthine (méthylorange)
- 11. Synthèse de la benzophénone
- 12. Synthèse de l'acétate d'éthyle

UEM12 / M123

Méthodes Numériques et Programmation

(1h30' Cours +1h30' TP/ sem. ou 3h TP/15j); 45h00/Semestre

Contenu de la matière :

Chapitre 1. Rappels sur les langages informatiques

MATLAB, MATHEMATICA, FORTRAN, C ou C++,

Chapitre 2. Intégration numérique

- 2. 1 Méthode des Trapèzes
- 2. 2 Méthode de Simpson

Chapitre 3. Résolution numérique des équations non-linéaires

- 3. 1 Méthode de Bissection
- 3. 2 Méthode de Newton

Chapitre 4. Résolution numérique des équations différentielles ordinaires

- 4. 1 Méthode d'Euler
- 4. 2 Méthode de Runge-Kutta

Chapitre 5. Résolution numérique des systèmes d'équations linéaires

- 5. 1 Méthode de Gauss
- 5. 2 Méthode de Gauss-Seidel

Unité d'Enseignement de Découverte (UED12)

UED12 / D121

Techniques d'Analyse Physico-Chimique I

(1h30' Cours+1h30' TD **(et/ou)** TP / semaine); 45h00/Semestre

Contenu de la matière :

1. Généralités sur les méthodes de séparations. (01 Semaine)

Séparation de constituants d'un mélange hétérogène Cas d'un mélange solide - liquide (filtration, centrifugation) Cas d'un mélange de deux liquides non miscibles Traitement d'une phase homogène

2. Séparation par rupture de phase. (02 Semaines)

Cas d'une solution liquide, Elimination. Relargage

3. Extraction par voie chimique (01Semaine)

4. Extraction par un solvant non miscible. (02 Semaines)

Généralités, expression du partage, coefficient de partage, taux de distribution, expression du rendement

Extraction simple : définition, étude quantitative, mise en œuvre pratique d'une extraction

5. Séparation par changement d'état. (03 Semaines)

Rappel de notions générales, sublimation, distillation simple, rectification (distillation fractionnée), distillation d'un mélange de liquides non miscibles

6. Méthode chromatographiques. (04 Semaines)

Généralités, principes généraux de la chromatographie (classification), représentation schématique d'un chromatogramme, étude théorique de la chromatographie : théorie des plateaux symétrie des pics phénomènes d'adsorption, Théorie cinétique (H.E.P.T équation de Van Deemter).

Mise en œuvre des méthodes chromatographiques : CCM, HPLC, CPG,...etc.

7. Osmose & dialyse. (02 Semaines)

- 1. G. MAHUZIER, M. HAMON Abrégé de chimie analytique «méthodes de séparation» tome 2 ; Ed. Masson, Paris, New York, Barcelone, Milan, (1978).
- 2. M.CHAVANE; G.J. BEAUDOIN A. JULLIEN; E. FLAMMAND «Chimie organique expérimentale», Modulo Editeur, (1986).
- 3. G.GUICHON, C. POMMIER «la chromatographie en phase gazeuse», Ed. Gauthier-Villars (1971).
- 4. J. TRANCHANT, Manuel pratique de chromatographie en phase gazeuse; 6ème Ed. MASSON; Paris, New York, Barcelone, Milan, (1-06-1996).
- 5. STAVROS Kromidas, pratical Problem solving in HPLC, Ed. WILEY-VCH Verdag (2000)
- 6. R.P BUDHIRAJA, Seapartion chemistry new age international (P) Ltd (2004);

Unité d'Enseignement Transversale (UET12)

UET12 / T121 Anglais 3

(1h00 Cours/semaine): 15h00/Semestre

Expression orale et écrite, communication et méthodologie en langue anglaise

Objectifs de l'enseignement : cette formation en anglais est dispensée en groupes de niveau. Deux buts sont poursuivis :

- l'acquisition d'une culture de langue scientifique et des bases de langage courant
- une capacité aux techniques de l'exposé oral.

Contenu de la matière :

Entraînement à la compréhension de documents écrits relatifs au domaine de la chimie. On tentera le plus possible d'associer l'enseignement des langues à la formation scientifique. Tous les supports seront utilisés :

- Traduction de notices et publications.
- Rédaction de résumés.
- Bibliographie et exposés de projet.

Programmes des matières, Semestre 4

Unité d'Enseignement Fondamentale (UEF22)

UEF22 / F221

Chimie Organique 2 : Chimie organique descriptive (3h Cours+1h30' TD/ semaine) ; 67h30/Semestre

Contenu de la matière :

Chapitre 1: Les hydrocarbures aliphatiques et alicycliques

- I- Les alcanes et cycloalcanes
- I-1- Propriétés physiques des alcanes et cycloalcanes
- I.2. Réactivité des alcanes et des cycloalcanes
 - Réactions de combustion (complète et partielle)
 - Réactions d'halogénation
- I-3- Préparation des alcanes et cycloalcanes
 - Hydrogénation catalytique des alcènes
 - Hydrogénation catalytique complète des alcynes
 - Hydrogénation catalytique de composés aromatiques
 - Déshalogénation (couplage métallique avec le Zn)
 - Réaction de Wurtz (couplage métallique avec le sodium)
 - Réaction d'un réactif de Grignard avec l'eau
- II- Les alcènes
- II-1- Propriétés physiques des alcènes
- II-2-Réactivité des alcènes
 - Addition d'halogénures d'hydrogène (H-X)
 - Hydratation en milieu acide (ou addition d'eau en milieu acide)
 - Hydratation par hydroboration
 - Addition de HX de type Markovnikov
 - Addition de HBr de type anti-Markovnikov
 - Hydrogénation catalytique (ou addition d'hydrogène, H₂)
 - Halogénation (ou addition d'halogènes, X₂)
 - Oxydation douce avec le permanganate de potassium dilué
 - Oxydation forte avec le KMnO₄ ou le K₂Cr₂O₇ concentré
 - Ozonolyse

- Formation d'époxydes (époxydation)
- II-3-Préparation des alcènes
 - Hydrogénation catalytique partielle des alcynes (réduction contrôlée des alcynes et formation d'alcènes cis)
 - Réduction contrôlée des alcynes avec le sodium métallique (formation d'alcènes trans)
 - Réactions d'élimination d'ordre 2 ou d'ordre 1
 - Déshalogénation (couplage métallique avec le Zn)
- III- les alcynes.
- III-1- Propriétés physiques des alcynes
- III-2- Réactivité des alcynes
 - Addition double : HX ; X₂ et H₂
 - Hydratation en milieu acide en présence d'un catalyseur de mercure
 - Hydratation par hydroboration
 - Hydrogénation catalytique partielle des alcynes (réduction contrôlée des alcynes et formation d'alcènes cis)
 - Réduction contrôlée des alcynes avec le sodium métallique (formation d'alcènes trans).
 - Oxydation et ozonolyse
 - Élongation de la chaîne carbonée : Formation de l'acétylure (ou sel d'alcyne), Réaction du sel d'alcyne avec un composé halogéné-un époxyde-un aldéhyde ou une cétone.
- III-3-Préparation des alcynes
 - Déshydrohalogénation double (élimination double)
 - Synthèse inorganique ; procédé industriel à partir du coke et de la chaux

Chapitre 2 : Les dérivés halogénés

- I.-Propriétés physiques des dérivés halogénés
- II.-Préparation des composés halogénés
 - Halogénation radicalaire des alcanes
 - Additions électrophiles sur un alcène : H-X ; X₂
 - Additions électrophiles doubles sur un alcyne : H-X, X₂
 - Réactions de substitution nucléophile à partir des alcools
 - Substitution électrophile des aromatiques ; halogénation
- III.-Réactivité des composés halogénés
 - Substitution nucléophile (SN1 et SN2)
 - Élimination (E1 et E2)
 - Hydrogénation catalytique (substitution radicalaire)
 - Réaction de Wurtz
 - Formation de cycloalcanes à partir de composés dihalogénés et de zinc métallique
 - Formation d'organomagnésiens (réactifs de Grignard)

Chapitre 3 : Les organométalliques

I-Préparation des composés organométalliques

- Formation d'organomagnésiens (réactifs de Grignard)
- Formation d'organolithiens

II- Réactivité des composés organométalliques (réactifs de Grignard)

- Réactions acido-basiques sur des composés ayant un proton acide
- Substitution nucléophile sur des composés halogénés R-X
- Additions nucléophiles sur des époxydes, sur des groupements carbonyles, sur des nitriles.

Chapitre 4 : Les alcools

I-Propriétés physiques

II-Préparation des alcools

- Réactions d'addition et d'oxydation sur les alcènes : Hydratation, Hydratation par hydroboration, Oxydation douce
 - Substitution nucléophile sur un composé halogéné
 - -Additions nucléophiles des composés organométalliques sur les époxydes, les aldéhydes, les cétones et les dérivés d'acides carboxyliques
 - Réduction des aldéhydes et des cétones
 - Hydrolyse (en milieu acide) et saponification (en milieu basique) des esters
 - Réduction d'esters

III-Réactivité des alcools

- Réaction rédox avec un métal, formation des ions alcoolate
- Réactions acido-basiques avec un réactif de Grignard
- Déshydratation (réaction d'élimination)
- Réactions de substitution nucléophile ; formation de composés halogénés
- -Oxydation : des alcools primaires en acides et des alcools secondaires en cétones, des alcools primaires en aldéhydes, Synthèse de Williamson : formation d'éthers asymétriques

Chapitre 5 : Les carbonyles : aldéhydes et cétones

I- Généralités

II-Préparation de composés carbonylés

III-Hydrogène α : tautomérie, acidité, réactions

IV-Addition nucléophile sur le carbonyle

V-Réduction des carbonyles

VI-Oxydation des carbonyles

Chapitre 6 : Les amines

I- Généralités

II- Préparation des amines

III-Réactivité des amines

Chapitre 7: Les acides carboxyliques

I- Généralités

II- Préparation

III-Réactivité des acides carboxyliques

Chapitre 8 : Les Arènes.

- 1. Chimie organique: Généralités, études des grandes fonctions et méthodes spectroscopiques ; Nicolas Rabasso. DeBoek 2007.
- 2. Chimie organique; Peter Voolhard; De Boeck; 2014
- 3. Chimie Organique ; Les grandes principes, cours, exercices et problèmes corrigés. John Mc Murry. Dunod, Paris 2003.
- 4. Chimie organique et polymères. Pascal Frajman, Jean-Marc Urbain. Ed, Nathan, 2007.
- 5. Chimie organique, exercices Résolus Paul Arnaud. Ed Dunod, Paris 2003.
- 6. Traité de chimie organique. Eric. Brown. Ed, Ellipses. 1999.
- 7. Chimie Organique. C. Ouahes. OPU-ALGER-2003.

UEF22 / F222

Thermodynamique & Cinétique Chimique

(3h Cours+1h30' TD/ semaine); 67h30'/Semestre

VHH Thermodynamique (1h30' Cours + 1h30'TD/15 jour VHH Cinétique (1h30' Cours + 1h30'TD/15 jour

Contenu de la matière :

PARTIE THERMODYNAMIQUE

Préambule : Rappels des principales notions vues en L1

Chapitre 1 : Thermodynamique des systèmes ouverts :

- 1. Les fonctions caractéristiques des systèmes ouverts,
- 2. Notion de potentiel chimique,
- 3. Application à la réaction chimique.

Chapitre 2 : Affinité chimique et loi d'action de masse

- 1. Avancement d'une réaction
- 2. Grandeurs de réactions
- 3. Affinité chimique
- 4. Equilibres et conditions d'équilibres
- 5. Critères d'évolution d'un équilibre
- 6. Influence de la température

Chapitre 3 : Etude thermodynamique d'une phase homogène contenant un corps pur

- 1. Introduction,
- 2. Relations fondamentales, Equations de Maxwell, Coefficients thermoélastiques,
- 3. Transformation d'un système contenant un corps pur sous une phase homogène : Transformations isotherme, isochore, isobare, adiabatique pour :
 - a. Les gaz parfaits (ΔH , ΔS , ΔG , ΔU et ΔF),
 - b. Les phases condensées (ΔH , ΔS , ΔG , ΔU et ΔF).

Chapitre 4 : Transformation de phases dans un système fermé contenant un corps pur

- 1. Introduction
- 2. Règles des phases de Gibbs (variance d'un système),
- 3. Equation de Clapeyron,
- 4. Equation de Clausius-Clapeyron,

- 5. Equilibre d'ébullition,
- 6. Equilibre de fusion,
- 7. Equilibre de sublimation,
- 8. Diagramme d'état (PVT) d'un corps pur.

Chapitre 5 : Les gaz réels

- 1. Les gaz parfaits
- 2. Les gaz réels. Notion de coefficient de compressibilité, Ecart par rapport à la notion de gaz parfait
- 3. Les équations d'état des gaz réels (van der Waals, viriel, Berthelot, Dietrici, BWR, RK, SRK, PR, ...)
- 4. Notion des états correspondants
- 5. Propriétés thermodynamiques des gaz réels. Les fonctions résiduelles,
- 6. Fugacité des gaz réels. Enthalpie Libre des gaz réels,
- 7. Expansion d'un gaz réel. Expériences de Joule et Joule-Thomson

PARTIE CINETIQUE CHIMIQUE

I- Réactions Chimiques Homogènes

Chapitre 1. Vitesse des réactions :

Mesure, expressions, ordre expérimental, moléculaire, réactions composées influence de température.

Chapitre 2. Réactions d'ordre simple :

Détermination de l'ordre global et des ordres partiels, méthode d'intégration, méthode différentielle, méthode d'isolement, ordre en fonction du temps et en fonction des concentrations initiales.

Chapitre 3. Réactions composées :

Réactions opposées (inverses), parallèles et successives, réactions complexes, combinaisons des réactions composées, Réactions complexes avec état stationnaire des composées intermédiaires, réactions par stade, réactions en chaînes.

Chapitre 4. Théorie de l'acte élémentaire :

Théorie des collisions, réaction pseudo mono moléculaire, théorie du complexe activé, énergie d'activation, sa mesure ; activation photochimique.

II - Réactions Chimiques Hétérogènes

Chapitre 5. Catalyse hétérogène :

Adsorption physique et chimisorption, Etudes physico-chimiques des catalyseurs, mécanismes d'action, cinétique de catalyse ; Influence de la température.

Chapitre 6. Réactions hétérogènes :

Méthodes d'étude, Loi de la nucléation, Phénomène de diffusion, Cinétique d'une réaction d'ordre 2, Cinétique d'une réaction par polarimétrie, détermination d'une énergie d'activation, Caractérisation physique des catalyseurs par adsorption, Adsorption d'un soluté sur solide, Cinétique d'une réaction.

Quelques références bibliographiques :

- 1. Thermodynamique, Jean Vidal, Ed. Technip.
- 2. Thermodynamique: Principes et Applications. P. Infelta, M. Graetzel,. Ed. Brown Walker Press.
- 3. The Bases of chemical thermodynamics: Volumes 1 & 2., M. Graetzel, P. Infelta, Ed. Universal Publishers.
- 4. Thermodynamique. Cours et problèmes, H.C. Van Ness et M.M. Abbott, Série Shaum, Ed. Mc Graw-Hill.
- 5. Thermodynamics of gases and liquids, B.E. Poling, J.M. Prausnitz et J.P. O'Connell, Ed. McGraw-Hill.
- 6. The properties of gases and liquids, R.C. Reid, J.M. Prausnitz et B.E. Poling, Ed. McGraw-Hill.
- 7. John M. Prausnitz & Rudiger N. Lichtenthaler. Molecular Thermodynamics of Fluid-Phase Equilibria. Ed. Prentice Hall International Series.
- 8. Peter Atkins. Thermodynamique. Ed. De Boeck.
- 9. Peter Atkins. Chimie Physique. Ed. De Boeck.

- 1- Chimie physique. Cours Paul Arnaud Dunod. Chap 26, 27 et 28.
- 2- Thermodynamique et équilibre chimique. Cours et exercices résolus. Chap 4: Avancement de la réaction. Dunod
- 3- Thermodynamique et cinétique chimique Chap 5 et 6. B. Baharmast, R. Barlet et J. Bouteillon. Collection "comprendre et approfondir la chimie". Dunod.
- 4- Exercices résolus de chimie physique. Chap 8. Paul Arnaud. Dunod
- 5- Chimis générale Chap 12. P. Atkins. inter édition rock.
- 6- Elément de cinétique et de catalyse. Chapitre 12-18. B. Frémaux. Technique et documentation. Lavoisier. Paris, 1989.
- 7- Introduction à la cinétique chimique. R. Ben Aïm, M. Destriau. Dunod Paris 1967.
- 8- Problèmes de cinétique chimique avec solutions détaillées et rappel de cours. J.C Déchaux,
- L. Delfoxe et J.P Sauwerysyn. Masson, Paris, 1980.
- 9- Chimie générale. Cinétique chimique. G.Pannetier et P. Souchay. Masson, Paris 1964.
- 10- Cinétique chimique et structure de la matière (exercices). P.Morlaës et J. C Morlaës. Vuibert.
- 11- Cinétique chimique : éléments fondamentaux. Michel Soustelle. Lavoisier.

UEF22 / F223

Chimie Analytique

(1h30 Cours+1h30' TD/ semaine); 45h00/Semestre

Contenu de la matière :

Chapitre 1. Généralités sur les solutions :

- 1.1. Définition d'une solution.
- 1.2. Concentrations des solutions (Expressions et unités).

Chapitre 2. Equilibres en solution :

- 1.1. Equilibre homogène et équilibre hétérogène.
- 1.2. La constante d'équilibre.
- 1.3. Les facteurs d'équilibre.
- 1.4. Principe de Le CHATELIER.

Chapitre 3. Solutions ioniques. Acides et Bases :

- 3.1 La dissociation ionique (L'équilibre de dissociation (L'auto ionisation de l'eau.)
- 3.2 Produit ionique de l'eau.
- 3.3 Généralités sur les acides et les bases (Définitions. Conséquences de la définition de BRONSTED).
- 3.4 Forces des acides et des bases.

Chapitre 4. pH des acides et des bases :

- 4.1 La notion de pH.
- 4.2 Calcul du pH d'un acide ou d'une base.
- 4.3 Hydrolyse des sels
- 4.4 pH du mélange d'un acide faible et sa base conjuguée
- 4.5 Solutions tampons
- 4.6 Indicateurs colorés
- 4.5 Neutralisation d'un acide par une base.

Chapitre 5. Oxydo-réduction:

- 2.1 Les notions d'oxydo-réduction et réduction.
- 2.2 Nombre d'oxydation d'un élément.
- 2.3 Détermination des coefficients des réactions d'oxydo-réduction.

Chapitre 6. Sels peu solubles en solution.

- 5.1 Etude des sels peu solubles (Définitions. Solubilité de sels. Produits de solubilité).
- 5.2 Déplacement de l'équilibre de solubilité

- 1. Précis de chimie, Solutions aqueuses, cours, exercices résolus, J. mesplede ; J. l. queyrel, 1987 .
- Chimie analytique : Chimie des solutions
 Martine Beljean-Leymarie, Jean-Pierre Dubost, Martine Galliot-Guilley Edition MASSON, 2006 .
- 3. Chimie des solutions. Avec 500 exercices corrigés. Kotz, Treichel Jr de boeck 2006.

UEF22 / F224

Chimie Quantique

(1h30 Cours+1h30' TD/ semaine); 45h00/Semestre

Contenu de la matière :

Chapitre 1 : Fondements de la mécanique quantique (4,5h)

Concept de la quantification (*Rayonnement du corps noir, Effet photo-électrique Modèle de Bohr*); Dualité Onde-Corpuscule; Fonction d'onde et équation de Schrödinger; Principe d'incertitude D'Heisenberg; Postulats de la mécanique quantique; Principe de Pauli pour les électrons.

Chapitre 2 : Modèle du puits de potentiel infini (3h)

- Modèle du puits de potentiel infini PPI et quantification de l'énergie
- Etude de la structure électronique des polyènes linéaires

Chapitre 3: Atome d'hydrogène (4,5h)

- Hamiltonien en coordonnées cartésiennes et en coordonnées sphériques
- Résolution de l'équation de Schrödinger indépendante du temps
- Nombres quantiques n, l et m et orbitales atomiques Ψ_{nlm} .

Chapitre 4 : Systèmes à plusieurs électrons (4,5 h)

- Hamiltonien d'un atome poly-électronique
- Théorème des électrons indépendants
- Règles empiriques de Slater
- Calcul des énergies atomiques et des orbitales de Slater

Chapitre 5: Les méthodes d'approximation (3h)

- Principe de la méthode des perturbations (atome d'hélium)
- Principe de la méthode des variations (atome d'hélim, ion moléculaire H₂+)

Chapitre 6 : Diagrammes des orbitales moléculaires (3h)

- Diagrammes des molécules diatomiques homo- et hétéro-nucléaires
- Diagrammes des molécules poly-atomiques
- Orbitales moléculaires liantes, anti-liantes et non-liantes

- 1- Ballentine, L. E., Quantum Mechanics: A Modern Development, World Scientific, 1998.
- 2- Griffiths, D. J., Introduction to Quantum Mechanics, Prentice Hall, 1995.
- 3- Helgaker, T., P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory, Wiley, 2000.
- 4-Johnson, C. S., and L. G. Pedersen, Problems and Solutions in Quantum Chemistry and Physics,

Addison-Wesley, 1974.

- 5-Lowe, J. P., and K. Peterson, *Quantum Chemistry*, 3rd ed., Elsevier Academic Press, 2006.
- 6- McQuarrie, D. A., *Quantum Chemistry*, 2nd ed., University Science, 2008.
- 7-Messiah, A., Quantum Mechanics, vols. 1 and 2, Halsted, 1963; Dover, 1999.
- 8- Offenhartz, P. O'D., Atomic and Molecular Orbital Theory, McGraw-Hill, 1970.
- 9- Pilar, F. L., Elementary Quantum Chemistry, 2nd ed., McGraw-Hill, 1990; Dover, 2011.
- 10- Yarkony, D. R., ed., Modern Electronic Structure Theory, World Scientific, 1995.

Unité d'Enseignement Méthodologie (UEM22)

UEM22 / M221

TP Chimie Analytique

(1h30' TP/ sem. ou 3h TP/15j); 22h30'/Semestre

Le choix du nombre de TP se fait en fonction du VHH et des moyens de chaque université.

TP Chimie Analytique

1- Préparation de solutions

2- Analyse volumétrique et réactions acido-basique : Titrages acido-basique

- Dosage d'une base forte par un acide faible (exemple NaOH- HCl)
- Dosage de l'acide faible par une base forte (exemple CH₃COOH par NaOH)
- Double titrage d'une solution (2 points d'équivalence) (exemple Na₂CO₃
- Dosage acide-base colorimétrique : Détermination de la teneur en acide acétique d'un vinaigre du commerce
- Dosage de diacides et de di bases.
- Dosage d'acides aminés (exemple: glycine, alanine...etc. selon disponibilité). Détermination de pKa1 et pKa2.

3- Détermination expérimentale de la solubilité (exemple NaCl)

Solubilité et produit de solubilité et effet d'ion commun

4- Analyse volumétrique par oxyde-réduction

- Dosage des ions ferreux par les ions permanganate
- Dosage d'une solution d'12 par le thiosulfate de sodium.
- Dosage d'oxydo-réduction indirect: Dosage d'une eau de Javel
- **5-** Dosage acide-base potentiométrique : Détermination de la constante d'acidité de l'acide acétique
- **6-** Comparaison entre dosage acide-base colorimétrique et potentiométrique : Dosage de l'aspirine contenue dans un comprimé
- 7- Dosage par compléxation EDTA (dureté de l'eau)

UEM22 / M222

TP Thermodynamique & Cinétique Chimique

(1h30' TP/ sem. ou 3h TP/15j); 22h30'/Semestre

Le choix du nombre de TP Thermodynamique et des TP Cinétique Chimique se fait en fonction du VHH et des movens de chaque université.

TP Thermodynamique & Cinétique Chimique

Partie: TP Thermodynamique

- 1. Expansion thermique des solides et des liquides
- 2. Pression de vapeur d'eau à une température inférieure à 100°C/Chaleur molaire de vaporisation
- 3. Pression de vapeur d'eau à haute température
- 4. Elévation de la température d'ébullition
- 5. Abaissement de la température de congélation
- 6. Détermination de l'équation d'état thermique et du point critique des gaz réels
- 7. Détermination du coefficient adiabatique des gaz.
- 8. L'effet Joule-Thomson

Partie: TP Cinétique Chimique

- 1. Cinétique de la réaction d'hydratation de l'éthylacétate
- 2. Détermination de la vitesse de réaction (2°ordre)
- 3. Adsorption d'un soluté sur solide
- 4. Etude de la réaction persulfate-iodure
- 5. Etude cinétique par conductimétrie de la saponification de l'acétate d'éthyle
- 6. Détermination de l'énergie d'activation

UEM22 / M223 Chimie Inorganique

(1h30' Cours+1h30' TD (et/ou)TP/semaine); 45h00/Semestre

Contenu de la matière :

Chapitre 1 : Structure des matériaux solides

Notions générales : Etat amorphe/cristallisé, poly/monocristaux, cristal parfait/réel (défauts, joints de grain, surface...). Structure des édifices métalliques. Liaison métallique : modèle de bandes. Application à la conductivité des métaux et des semiconducteurs. Alliages. Structure des édifices atomiques et moléculaires. Structure et géométrie des édifices ioniques. Modèle de la liaison ionique. Energie réticulaire (solutions solides : d'insertion, de substitution. Cristal réel et défauts : Défauts électroniques, défauts ponctuels, défauts linéaires et défauts plans.

Chapitre 2: Introduction à la cristallographie

Notion de maille. Réseaux cristallins Multiplicité d'une maille. Rangées. Plans réticulaires. Les sept systèmes cristallins. Les quatorze réseaux de Bravais. La symétrie dans les cristaux. Réseaux réciproques des réseaux non primitifs.

Chapitre 3 : Les structures métalliques

Notion de maille. Disposition carrée : Structure semi compacte cubique centrée CC. Disposition triangulaire : Symétrie hexagonale compacte HC, Symétrie cubique à faces centrées CFC. Sites interstitiels : dans le CC, dans le HC, dans le CFC.

Chapitre 4: Structures ioniques

Structures du type AB : CsCl, NaCl, ZnS blende, ZnS wurtzite. Structure du type AB2: Fluorine CaF2, Rutile TiO2

Chapitre 5 : Structures covalentes

Unité d'Enseignement de Découverte (UED22)

UED22 / D221 Techniques d'Analyse Physico-Chimique II (1h30' Cours+1h30' TD (et/ou) TP semaine); 45h00/Semestre

Contenu de la matière :

Chapitre 1. Introduction aux méthodes spectrales : (01 Semaine)

Définition et généralités sur les spectres électromagnétiques.

Chapitre 2. Les lois d'absorption et application de la loi de BEER LAMBERT à la spectrophotométrie UV-Visible : (02 Semaines)

Principe. Différents domaines d'absorption. Différents chromophores. Application en analyse quantitative.

Chapitre 3. Spectrophotométrie d'absorption atomique : (03 Semaines)

Principe et théorie. Instrumentation. Caractéristiques d'une flamme. Four d'atomisation. Interférences. Applications.

Chapitre 4. Spectrométrie infrarouge : (03 Semaines)

Présentation du spectre du moyen infrarouge. Origine des absorptions dans le moyen infrarouge. Bandes de vibration-rotation du moyen infrarouge. Modèle simplifié des interactions vibrationnelles. Bandes caractéristiques des composés organiques. Instrumentation. Comparaison des spectres.

Chapitre 5. Spectroscopie de Résonance Magnétique Nucléaire : (04 Semaines)

Généralités. Interaction spin/champ magnétique pour un noyau. Les noyaux qui peuvent être étudiés par RMN. Théorie de Bloch pour un noyau dont I=1/2. Le principe de l'obtention du spectre par R.M.N. La R.M.N. de l'hydrogène. Le déplacement chimique. Noyaux blindés et déblindés. Structure hyperfine. Couplage spin-spin. La R.M.N. du Proton H. Protons équivalents Le déplacement chimique. Blindage et déblindage, Règle de multiplicité des signaux, protons non liés au carbone

Chapitre 6. Spectrométrie de masse : (initiation) (02 Semaines)

Structure d'un spectromètre ; utilisation ; la source d'ionisation (EI, CI....) ; l'analyseur de masse, le détecteur, Spectre de masse

- 1. M. PINTA «Spectrométrie d'absorption atomique», Tomes I et II, Ed. Masson, (1979).
- 2. R. DAVIS, M. FREARSON «Mass spectrometry», Ed. J. Wiley, (1992).
- 3. B.C. SMITH "«Fundamentals of Fourrier Transformed Infrared» C.R.C Press Inc. (1996).
- 4. E. CONSTANTIN, Spectrométrie de masse, principe et application Ed. Tec-Doc, 2ème Ed., Paris (1996)
- 5. E. CONSTANTIN «Spectrométrie de masse, principe et application» Ed. Tec-Doc, 2ème Ed., Paris (1996).
- 6. M. Mc MASTER «GC / MS Practical User's Guide» Ed. WILEY- VCH (1998).
- 7. F. ROUESSAC, A. ROUESSAC, «Analyse Chimique. Méthodes et Techniques instrumentales modernes». Cours et exercices résolus, 6ème édition. Dunod, Paris, (2004).
- 8. I. MULLER-HARVEY and R.M. BAKER, Chemical Analysis in Laboratory, The Royal Society of Chemistry, (2002)
- 9. F. ROUESSAC, A. ROUESSAC, Modern Instrumentation, Methods and Technics, Second Edition, J.W Jhon Wiley and Sons Ltd 2007

Unité d'Enseignement Transversale (UET22)

UET22 / T221

Anglais 4

(1h00 Cours/semaine); 15h00/Semestre

Cette unité est une continuité de l'unité : **Expression orale et écrite, communication et méthodologie en langue anglaise du Semestre 3**.

Les objectifs sont :

- Participation active de l'étudiant à sa propre formation.
- Initiation aux techniques de communications.
- Initiation aux techniques de recherche bibliographique.
- Apprendre à rédiger et exposer une étude donnée de culture générale.
- Initiation aux techniques de recherche sur internet.